
A Parallel, Adaptive Re�nement Scheme for

Tetrahedral and Triangular Grids

Alan Stagg1, Jackie Hallberg2, and Joseph Schmidt3

1 Los Alamos National Laboratory, Applied Physics Division

P.O. Box 1663, MS P365

Los Alamos, NM 87545

stagg@lanl.gov
2 U.S. Army Engineer Research and Development Center

Coastal and Hydraulics Laboratory

3909 Halls Ferry Road

Vicksburg, MS 39180

pettway@juanita.wes.army.mil
3 2420 Wanda Way

Reston, VA 20191

roig.and.schmidt@erols.com

Abstract. A grid re�nement scheme has been developed for tetrahe-

dral and triangular grid-based calculations in message-passing environ-

ments. The element adaption scheme is based on edge bisection of el-

ements marked for re�nement by an appropriate error indicator. Hash

table/linked list data structures are used to store nodal and element

information. The grid along inter-processor boundaries is re�ned con-

sistently with the update of these data structures via MPI calls. The

parallel adaption scheme has been applied to the solution of a transient,

three-dimensional, nonlinear, groundwater
ow problem. Timings indi-

cate eÆciency of the grid re�nement process relative to the
ow solver

calculations.

1 Introduction

Adaptive grid methods based on point insertion and removal have been popu-
lar for a number of years for achieving greater solution accuracy with relative
cost eÆciency. However, issues related to implementing such schemes on parallel
systems are just now being addressed, and much work is needed to identify the
best approaches.

In this paper we present a new approach for the h-re�nement of irregular
tetrahedral and triangular grids in message-passing environments. Data struc-
tures have been selected to simplify implementation and coding complexity as
much as possible for re�nement, coarsening, and load balancing components.
This software is being implemented in the Department of Defense code ADH
(ADaptive Hydrology) under development at the U.S. Army Engineer Research

and Development Center. ADH is a modular, parallel, �nite element code de-
signed to support groundwater, surface water, and free-surface Navier-Stokes
modeling [1].

1.1 Serial Element Adaption Scheme

Given an initial grid, the model subdivides grid elements to achieve the desired
resolution in regions of interest. The parallel grid adaption scheme developed
here is based on the geometric splitting algorithm of Liu and Joe [2]. Elements
are re�ned by edge bisection according to an error indicator, and elements can
be merged to increase eÆciency where high resolution is not required. A grid
closure step is utilized to eliminate hanging nodes. Element edges are selected for
bisection based on a modi�ed longest-edge bisection approach in which the oldest
edge in the element is �rst
agged for bisection followed by the longest edge.
Re�nement and coarsening of a tetrahedral element are illustrated in Figure 1.
Here a new node is added to an edge, creating two new tetrahedra. The new
elements can be merged to recover the original element by removing the inserted
node.

parent element

refine

coarsen
new
node

parent

parent

node 1

node 2

Fig. 1. Tetrahedral Grid Adaption Based on Edge Bisection

The re�nement process begins with determination of elements to be split
according to an explicit error indicator. The following pseudo-code illustrates
the basic steps in the re�nement scheme.

Re�nement pseudo-code

loop over elements

refine element via edge bisection if its error > tolerance;

conforming grid = false;

do while conforming grid == false f
conforming grid = true;

loop over elements

if element has an edge with a newly inserted node f
refine element;

conforming grid = false;

g
g

2 Parallel Implementation

The parallel implementation of local grid re�nement schemes like the edge bisec-
tion scheme presented above presents a number of challenges for the message-
passing environment. First, in the standard approach where the grid is parti-
tioned and subregions are assigned to processors, the subregions must be re�ned
and coarsened consistently along processor boundaries. Also, closure require-
ments may force element re�nement to spread to a processor that has no ele-
ments marked for re�nement by the error indicator. Finally, the local adaption
process will likely lead to load imbalances among the processors, and nodes and
elements must be transferred between processors during dynamic load balancing
so that processing eÆciency is maintained. In this paper we focus on describing
the methodology developed for element re�nement in parallel.

In our approach the grid is partitioned by assigning element nodes to proces-
sors. Elements along processor boundaries are shared by the processors owning
the element nodes. Nodal information for these elements is communicated be-
tween processors using MPI, and each processor stores complete data for its
shared elements [3].

2.1 Data Structures

Data structures were selected to simplify the parallel implementation of the
adaption scheme and to facilitate the coupling of the re�nement, coarsening,
and load balancing components. During early work, we realized that common
techniques like the use of tree structures for re�nement could adversely impact
other adaption components such as load balancing. In this case, the use of graph
partitioners and the resulting grid point movement between processors requires
splitting re�nement trees between processors. To avoid these diÆculties we use
hash table/linked list structures [4]. Such structures are naturally suited for
grid adaption since they are dynamic in nature and facilitate node and element
searches. These structures handle all grid re�nement, coarsening, and load bal-
ancing needs without complicating the implementation of any single component.

Hash tables are used to store nodes and element edges. Each entry in the
node hash table consists of a local node number relative to the owning processor
and corresponding node identi�er in the global grid. Each entry in the edge hash
table consists of the two local node numbers that de�ne the edge, an integer
edge rank based on comparative lengths of the edges, and an integer that stores

the new node number if a node is inserted on the edge. Prior to re�nement, the
node and edge hash tables are allocated and �lled, and the memory is freed once
the re�nement process is complete.

2.2 Grid Consistency between Processors

The grid re�nement scheme presented here is primarily a local process and is
thus amenable to parallel processing. The principal requirement in the paral-
lel environment is that processors periodically communicate to maintain grid
consistency along the inter-processor boundaries. One example is illustrated in
Fig. 2 for the communication of edges. Here two elements are shown with nodes

high error

low error

P0(owns edge) P1

Fig. 2. Edge Bisected by Owning Processor

distributed over two processors. The left element is marked for re�nement due
to high error while the right element is not. Processor 0 bisects the common
edge, and processor 1 must be informed that re�nement of the right triangle is
required for closure.

In the serial case, the new node number on the edge is stored in the edge hash
table, and the adjacent element checks for the presence of a new node in the hash
table to see if re�nement for closure is required. In our partitioning approach,
an edge that spans two processors will appear in each of these processors' hash
tables, and a protocol must be established to maintain consistency of the edge
hash tables between processors. To support this communication, edge communi-
cation lists are constructed which provide a mapping between these duplicated
edge storage locations. For each such edge, one of the processors sharing the
edge is assigned ownership of it.

2.3 Edge Ranking

After constructing the edge communication lists, the edges are ranked based
on length so that they are uniquely and consistently identi�ed throughout the

global grid for the re�nement phase. Integer rankings are utilized rather than
using computed edge lengths so that processors are easily able to make consistent
edge bisection decisions when multiple edges in an element are the same length.

Following a parallel odd-even transposition sort, global ranks are returned to
processors owning the edges, and the ranks are then stored by these processors
in their edge hash tables. These processors then communicate the ranks to the
processors sharing the edges using the edge communication lists that have been
constructed. The receiving processors �nally store the ranks in their edge hash
tables.

2.4 Element Re�nement

After elements have been selected for re�nement based on the error indicator,
edges are selected for bisection based on their age and ranking within the ele-
ment. To re�ne an element, the oldest edge (or longest edge in a tie) is bisected
if necessary. To determine if the edge has already been bisected, the new node
entry in the edge structure is inspected for that edge. If the edge has not been bi-
sected, a new node is created for the edge, and the hash table is adjusted locally.
Two new elements are created with the bisection of an edge, and the element
Jacobians and other data are corrected for these elements. The new node entries
for the edges in these new elements are reinitialized to indicate that new nodes
are not present.

2.5 Grid Closure

After elements have been re�ned based on the error indicator, further re�nement
might be required to obtain a conforming grid. In the serial case each element
is checked for edges with new nodes via the edge hash table. If any element has
an edge with a new node, that element is marked for re�nement according to
the established rules. The re�nement process continues iteratively until a closed
grid is obtained.

In the parallel environment this procedure is complicated by the fact that
shared edges may be bisected by only one of the processors spanned by the edge.
To maintain consistency of the edge hash tables, processors owning shared edges
communicate new node information to processors sharing the edges. If a message
indicates that an edge has a new node, then the receiving processor creates a
new node for the edge and updates its hash table. Similarly, processors may
bisect edges they do not own. To handle this situation, the edge communication
lists are utilized in reverse order (the send list becomes a receive list, and vice
verse) so that processors owning shared edges can update their hash tables if
other processors bisect them. After this communication, the elements with new
nodes on edges are re�ned, and the process is repeated until the grid is closed.

3 Results

The capabilities of the parallel grid re�nement scheme have been investigated
for the solution of a draining heterogeneous column. In this problem a column is
�lled with a mixture of clay, silt, and sand. The column consist primarily of sand
with a clay lens near the bottom and silt lenses in several places throughout the
column. Initially, the column is completely saturated with water, and then the
water is allowed to drain from the bottom of the column. The grid is allowed to
re�ne and coarsen locally as dictated by the explicit error indicator, and dynamic
load balancing is utilized to improve processor eÆciency.

A snapshot of the adaptively re�ned grid for the hegerogeneous column is
illustrated in Fig. 3. The area shaded black represents the clay material, while

Fig. 3. Adaptively Re�ned Grid for Heterogeneous Column

the sand and silt are represented by the gray and white regions, respectively.
Grid re�nement is visible at the sand/silt interface in the lowest points of the
sand. This re�nement is indicative of the large head gradient from the sand to
the silt. Water travels through the sand at a faster rate than through the silt
due to the silt's lower conductivity. As a result, the water ponds, or collects, in
the low points of the sand until the pressure is great enough to push the
ow
across the interface.

4 Conclusion

A parallel re�nement scheme has been developed for tetrahedral and triangu-
lar grids. The re�nement scheme and data structures described in this abstract
have been developed to facilitate the parallel implementation of both grid re�ne-
ment and coarsening. Though not described here, the coarsening phase (like the
re�nement phase) is based on communicating a minimum set of data and recon-
structing information locally where necessary without the use of tree structures.
The goal with this approach is a balanced design between re�nement, coarsening,
and load balancing in terms of eÆciency and ease of implementation. Applica-
tion of the adaptive grid scheme to a transient groundwater
ow problem has
demonstrated the capabilities and eÆciency of the method.

References

1. Jenkins, E.W., Berger, R.C., Hallberg, J.P., Howington, S.E., Kelley, C.T., Schmidt,

J.H., Stagg, A.K., and Tocci, M.D., \Newton-Krylov-Schwarz Methods for Richards'

Equation," submitted to the SIAM Journal on Scienti�c Computing, October 1999.

2. Liu, A. and Joe, B., \Quality Local Re�nement of Tetrahedral Meshes Based on

Bisection," SIAM Journal on Scienti�c Computing, vol. 16, no. 6, pp. 1269-1291,

November 1995.

3. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI- The

Complete Reference, Volume 1, The MPI Core, The MIT PRess, Cambridge, Mas-

sachusetts, 1998.

4. Cormen, T., Leiserson, C., Rivest, R., Introduction to Algorithms, The MIT Press,

Cambridge, Massachusetts, 1990.

